版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、毕业设计(论文外文资料翻译外文出处: A. Safari and D. J. Waller, "Fine Scale PZT Fiber/Polymer Composites” 附 件: 1.外文资料翻译译文;2.外文原文。 附件1:外文资料翻译译文通过注射成型制造压电陶瓷/聚合物复合材料Leslie J. Bowen 和 Kenneth W. French原料系统(有限公司摩洛哥康考德希尔克雷斯特大道53号, 邮编01742摘要宾夕法尼亚州立大学材料研究室的研究已经证明通过使用压电陶瓷/聚合物复合材料可以改进检漏器(水诊器潜能。作为美国海军研究局的资助计划的一部分,旨在开发针对这些
2、合成物且具有成本效益制造技术,材料系统正在寻求一种陶瓷制造方法的注射成型。本文简要概览了陶瓷注射成型过程的关键细节,并且记叙了制造压电陶瓷/聚合物复合材料的步骤及方法论。注射成型压电陶瓷的设备和应用程序都是区别于传统的材料的加工。绪论压电陶瓷/聚合物复合材料提供了设计的多功能性和性能优势,在遥感和驱动应用方面都超越单独的陶瓷与聚合物的压电材料。这些合成物已经被开始用于高解析度超声医学以及海军的发展应用。在过去的十三年里,许多复合的配置已经按照一个实验室的规模被构造且评估。其中最成功的组合之一,被指定复合物的纽纳姆号,有一个三维连接陶瓷阶段(压电纤维内含三维连接有机聚合物的阶段。检漏器的性能系数
3、可使得这个复合物超过那些通过适当选择阶段特征和复合结构的固体材料10000倍。宾州州立大学复合物的制备是通过在一个跳汰机和封装环氧树脂中手调挤压压电陶瓷棒,之后限制适当的厚度并极化陶瓷。除了这种材料所展示出的性能优势,宾州州立大学的工作所凸显的问题涉及合成物的大规模制造或者甚至以原型为目的。这些是:(1在通过聚合物封装时大量的压电陶瓷光纤的库存和供给需求。(2在极化过程中发生率高的介电击穿是起于在一个典型的大型阵列遇到一个或多个有缺陷的纤维的显著概率。在过去的五年里,为了提高制造行业的生存能力并降低材料成本已经多次尝试简化传感器的组装工艺。早期的尝试包括将压电陶瓷的固体块切割至理想的配置和聚合
4、体阶段的空缺回填。这项技术已经被超声医学工业接受并用于制造高频传感器。最近,纤维材料公司已经证明了其用于纤维增强复合材料的编织技术在装配压电材料方面的适应性。另外的一项探索技术涉及复制多孔织物已经有适当的连通性。对于极其精密尺度的复合材料,纤维的直径大约为20至100微米,长宽比大于5以满足装置性能需要的目标。因此,这些困难再加上额外的成型与处理庞大数量且无缺陷的极其精细的纤维的挑战。最近,西门子公司的研究人员表明非常精密尺度的复合材料可以通过一种不定的模具技术来制造。然而,这种方法需要为每一个部分制造一个新的模具。本文介绍一种压电复合加工的新方法,即:陶瓷注射成型。陶瓷注射成型无论对海军的压
5、电陶瓷/聚合物复合材料或是对于极其加工规模的压电复合材料(如那些所需的高频超声医疗及无损评估都是一种具有成本效益的制造方法。注塑成型过程克服了通过网型预成型陶瓷纤维整列使装配导向陶瓷纤维进入复合材料传感器的困难。除了这个优势,该方法使得比那些以前的设想具有更复杂陶瓷元素几何的复合传感器成为可能,以致产生了为提高声阻抗匹配性的更高的设计柔性以及横向模式的取消。过程描述注塑成型被广泛应用于塑料行业作为一种较低成本、形状复杂的迅速大规模生产。此种方法最适合应用于陶瓷小截面形状,例如线程导向,以及无需烧结至很高密度的大而复杂的形状,如涡轮机的叶片铸造插入。最近,这种方法已被研究用作生产热发动机涡轮部件
6、的技术。如图1所示,注塑成型方法已被用于压电陶瓷的成型。通过将热塑性塑料与陶瓷粉末的混合物有机结合并注入一个冷却模具,复杂的形状就能方便且快速的正常与塑料结合成型。预防例如像金属接触硬化的表面,尽量减少金属从混和与成型器械受到的污染。对于陶瓷,型腔必须无损拆除,迫使高的固体载荷,严格控制型腔移除的过程,以及适当的夹具。一旦型腔移除,随后点火,极化并且环氧树脂的封装过程是和那些常规压电陶瓷/复合材料类似。因此,此方法在替代制造路线上提供了很大优势:复杂,能够同时处理许多纤维的近似网状;快速的生产能力(通常是一部分几秒;统计过程控制的兼容性;材料的低浪费;有关传感器设计的柔性(允许PZT中元素空间
7、和形状的变化;以及在中量至大量之间的低成本。一般来说,由于最初加工的高成本,陶瓷注射成型的方法是最适用于复杂形状的构成,需要低成本大批量。图1 注射成型过程流程 图2 制作合成物的预成型方法合成物的制造及评价制造1-3压电复合材料的方法如图2a所示,这阐述了使用一个完整的陶瓷胚型到纤维定位作用的压电陶瓷预先成型的概念。在聚合物封装后采用磨削去除陶瓷胚。除了简化许多纤维的处理,这种预先成型的方法允许广泛地选择压电陶瓷元素几何元素范围,以使其性能最优化。工具的设计是取得注塑压电复合材料成功的重要因素。如图2b所示的方法使用了无需导致额外重组成本的嵌入式的并允许局部变化的设计。图2c所示如何配置个别
8、的预加工的成品以形成大批生产在实践中,材料和成型参数必须最优化并成型工具的设计相结合以实现在成型后完整的脱模。关键的参数包括:压电陶瓷/装夹工具之比,压电元件的直径和锥度,压电陶瓷基本轴向厚度,工具表面的磨光,以及成型零件的脱模机构的设计。为了评估这些工艺参数而不承担过多的工艺成本,一种工具的设计根据实验目的采用只有两排的各自19个压电陶瓷要素。每一行的要素都包括三个锥角(0,1和2度以及两个直径(0.5mm和1mm。为了容许成型收缩,预加工的工件尺寸维持在50mmX50mm,以尽量减少在制模周期中的冷却部分折断外层纤维的可能性。图3所示的绿色陶瓷瓶坯的制造使用这种工具配置。请注意,所有压电陶
9、瓷在成型后的完整的脱模,包括那些没有纵向尖端不方便的脱模。空气中的缓慢加热已经被发现是一个适合去除有机粘合剂的方法。最后,烧坏的粘合剂被烧结在一个理论值在97-98%的富含氧化铅的气体中。在烧结这些合成物型坯时没有遇到任何控制重量减轻的问题,甚至是那些用于高频超声的高尺寸精度,高表面质量的型坯。图3 注射成型1-3预成型合成物 图4 电子显微镜扫描PZT表面图4说明了表面为压模和作为烧结的纤维,显示出大约10um宽的存在的浅的折线,这是在注射成型过程中特有的。那个沿其长度方向显现出微小孔型设计的纤维取决于从工具中的脱模过程。图5所示近似网状的成型方式用于制造非常精细尺度的型坯的能力;所示压电元
10、件的尺寸只有30um。由作为这些烧结的表面指出,压电陶瓷的显微结构是密集且均匀的,由直径为2-3um的细碎的等轴晶体构成。图5 由近似网状的成型的精密尺度的合成物为了示范上述合成物制造的方法,注射成型和烧结的纤维行在用于成型合成物型坯的压电陶瓷被磨光之后,大约总体10%的5H*压电陶瓷合成物以及环氧树脂Spurrs在制造时通过环氧成对封装。图6所示复合材料样品使用刚才复合的压电陶瓷/粘结剂混合物以及再生材料制造。回收复合物和成型的材料似乎是完全可行的,并且结果大大提高材料的利用率。表1比较了使用粉末制造商准备好的那些被报道的用于模压的5H压电陶瓷样品注射成型压电陶瓷样品的压电和介电的性能。当烧
11、结条件最优于压电陶瓷5H的条件,压电和介电的性能都较所有材料有可比性。当压电陶瓷5H的原料物质被考虑到受注射成型设备污染铁的敏感性,这些有关的测量方法对于这种注射成型的压电陶瓷材料可以忽略这类污染。*粉末的提供方是俄亥俄州贝德福德的摩根士丹利公司,105A街区。表1 压电陶瓷注塑成型的参数 图6 上述方法精制压电陶瓷/树脂合成物的注塑成型总结陶瓷注射成型已被证明是一种可行的制造压电陶瓷和压电陶瓷/聚合物传感器的方法。注射成型压电陶瓷的电相关特性区别于那些通过传统的准备好的粉末压模,没有证据证明在混合物以及成型设备中产生的金属杂质会产生污染影响。通过陶瓷的注射成型来制造合成物型坯,之后使用型坯来
12、形成大批生产,此种方法已经证明用于网状大量制造压电复合物传感器。致谢这项工作由海军研究事务所的Stephen E.Newfield先生赞助指导。作者要感谢Hong Pham女士提供的技术援助,以及材料研究实验所的Tomas Shrout博士,宾州州立大学所做的电器测量工作。参考文献1 R. E. Newnham等著,复合压电式传感器,材料工程,第二卷,93-106页,1980年12月出版2 C. Nakaya等著,IEEE超音波专业座谈会,1985年十月16-18日。P6343 S. D. Darrah等著,大面积压电复合材料关于活性物质和构造的ADPA会议,亚历山德里亚,十一月4-8日,19
13、91年,埃德。湾诺尔斯,物理研究所出版,页139-142 。4 A. Safari and D. J. Waller著,精密尺度的烟点陶瓷纤维/聚合物复合材料,在关于活性物质和构造的ADPA会议上提交,亚里山德里亚,危吉利亚,十一月4-8号,1991年。5 U. Bast, D. Cramer and A. Wolff著,一种用来制造1-3连通形压电复合材料的新方法,第七届CIMTEC , 意大利蒙特卡蒂尼, 6月24至30号, 1990年,Ed.P. Vincenzini, Elsevier,2005-2015页6 G. Bandyopadhyay and K. W. French著,网状的
14、硅的氮化物应用于发动机的制造,对涡轮增压器转自及动力,108,536-539页,1986年出版7 J. Greim等著,烧结注塑涡轮增压转子,第三届关于热动力的陶瓷材料及构造国际研讨,内华达州拉斯维加斯,1365-1375页,Amer. Cer. Soc,1989年附件2:外文原文FABRICATION OF PIEZOELECTRIC CERAMlClPOLYMER COMPOSITES BY INJECTION MOLDING.Leslie J. Bowen and Kenneth W. French,Materials Systems Inc.53 Hillcrest Road, Con
15、cord, MA 01742AbstractResearch at the Materials Research Laboratory, Pennsylvania State University has demonstrated the potential for improving hydrophone performance using piezoelectric ceramic/polymer composites. As part of an ONR-funded initiative to develop cost-effective manufacturing technolog
16、y for these composites, Materials Systems is pursuing an injection molding ceramic fabrication approach. This paper briefly overviews key features of the ceramic injection molding process, then describes the approach and methodology being used to fabricate PZT ceramic/polymer composites. Properties
17、and applications of injection molded PZT ceramics are compared with conventionally processed material.IntroductionPiezoelectric ceramic/polymer composites offer design versatility and performance advantages over both single phase ceramic and polymer piezoelectric materials in both sensing and actuat
18、ing applications. These composites have found use in high resolution medical ultrasound as well as developmental Navy applications. Many composite configurations have been constructed and evaluated on a laboratory scale over the past thirteen years. One of the most successful combinations, designate
19、d 1-3 composite in Newnhams notation l 1, has a one-dimensionally connected ceramic phase (PZT fibers contained within a three-dimensionally connected organic polymer phase. Hydrophone figures of merit for this composite can be made over 10,000 times greater than those of solid PZT ceramic by approp
20、riately selecting the phase characteristics and composite structure.The Penn State composites were fabricated l by hand-aligning extruded PZT ceramic rods in a jig and encapsulating in epoxy resin, followed by slicing to the appropriate thickness and poling the ceramic. Aside from demonstrating the
21、performance advantages of this material, the Penn State work highlighted the difficulties involved in fabricating 1-3 composites on a large scale, or even for prototype purposes. These are:1 The requirement to align and support large numbers of PZT fibers during encapsulation by the polymer.2 The hi
22、gh incidence of dielectric breakdown during poling arising from the significant probability of encountering one or more defective fibers in a typical large array. Over the past five years several attempts have been made to simplify the assembly process for 1-3 transducers with the intention of impro
23、ving manufacturing viability and lowering the material cost. Early attempts involved dicing solid blocks of PZT ceramic into the desired configuration and back-filling the spaces with a polymer phase. This technique has industry for manufacturing high frequency transducers 2. More recently, Fiber Ma
24、terials Corp. has demonstrated the applicability of its weaving technology for fiber-reinforced composites to the assembly of piezoelectric composites 31. Another exploratory technique involves replicating porous fabrics having the appropriate connectivity 4. For extremely fine scale composites, fib
25、ers having diameters in the order of 25 to 100 pn and aspect ratios in excess of five are required to meet device performance objectives. As a result, these difficulties are compounded by the additional challenge of forming and handling extremely fine fibers in large quantities without defects. Rece
26、ntly, researchers at Siemens Corp. have shown that very fine scale composites can be produced by a fugitive mold technique. However, this method requires fabricating a new mold for every part 5. This paper describes a new approach to piezoelectric composite fabrication, viz: Ceramic injection moldin
27、g. Ceramic injection molding is a costeffective fabrication approach for both Navy piezoelectric ceramic/polymer composites and for the fabrication of ultrafine scale piezoelectric composites, such as those required for high frequency medical ultrasound and nondestructive evaluation. The injection m
28、olding process overcomes the difficulty of assembling oriented ceramic fibers into composite transducers by net-shape preforming ceramic fiber arrays. Aside from this advantage, the process makes possible the construction of composite transducers having more complex ceramic element geometries than t
29、hose previously envisioned, leading to greater design flexibility for improved acoustic impedance matching and lateral mode cancellation.Process Description Injection molding is widely used in the plastics industry as a means for rapid mass production of complex shapes at low cost. Its application t
30、o ceramics has been most successful for small crosssection shapes, e.g. thread guides, and large, complex shapes which do not require sintering to high density, such as turbine blade casting inserts. More recently, the process has been investigated as a production technology for heat-engine turbine
31、components 6,7. The injection molding process used for PZT molding is shown schematically in Figure 1.By injecting a hot thermoplastic mixture of ceramic powder and organic binder into a cooled mold, complex shapes can be formed with the ease and rapidity normally associated with plastics molding. P
32、recautions, such as hard-facing the metal contact surfaces, are important to minimize metallic contamination from the compounding and molding machinery. For ceramics, the binder must be removed nondestructively, necessitating high solids loading, careful control of the binder removal process, and pr
33、oper fixturing. Once the binder is removed, the subsequent firing, poling and epoxy encapsulation processes are similar to those used for conventional PZT/polymer composites 1. Thus, the process offers the following advantages over alternative fabrication routes: Complex, near net-shape capability f
34、or handling many fibers simultaneously; rapid throughput (typically seconds per part; compatibility with statistical process control; low material waste; flexibility with respect to transducer design (allows variation in PZT element spacing and shape; and low cost in moderate to high volumes. In gen
35、eral, because of the high initial tooling cost, the ceramics injection molding process is best applied to complex-shaped components which require low cost in high volumes. Figure 1 : Injection Molding Process Route. Figure 2: Preform Approach to Composite Fabrication.Composite Fabrication and Evalua
36、tionThe approach taken to fabricate 1-3 piezoelectric composites is shown in Figure 2a, which illustrates a PZT ceramic preform concept in which fiber positioning is achieved using a co-molded integral ceramic base. After polymer encapsulation the ceramic base is removed by grinding. Aside from easl
37、ng the handling of many fibers, this preform approach allows broad latitude in the selection of piezoelectric ceramic element geometry for composite performance optimization. Tool design is important for successful injection molding of piezoelectric composites. The approach shown in Figure 2b uses s
38、haped tool inserts to allow changes in part design without incurring excessive retooling costs. Figure 2c shows how individual preforms are configured to form larger arraysIn practice, material and molding parameters must be optimized and integrated with injection molding tool design to realize inta
39、ct preform ejection after molding. Key parameters include: PZT/binder ratio, PZT element diameter and taper, PZT base thickness, tool surface finish, and the molded part ejection mechanism design. In order to evaluate these process parameters without incurring excessive tool cost, a tool design havi
40、ng only two rows of 19 PZT elements each has been adopted for experimental purposes. Each row contains elements having three taper angles (0, 1 and 2 degrees and two diameters (0.5 and l mm. To accommodate molding shrinkage, the size of the preform is maintained at 5Ox50mm to minimize the possibilit
41、y of shearing off the outermost fibers during the cooling portion of the molding cycle.Figure 3 shows green ceramic preforms fabricated using this tool configuration. Note that all of the PZT elements ejected intact after molding, including those having no longitudinal tapering to facilitate ejectio
42、n. Slow heating in air has been found to be a suitable method for organic binder removal. Finally, the burned-out preforms are sintered in a PbOrich atmosphere to 97-98% of the theoretical density. No problems have been encountered with controlling the weight loss during sintering of these composite
43、 preforms, even for those fine-scale, high-surface area preforms which are intended for high frequency ultrasound.Figure 4 illustrates the surfaces of as-molded and as-sintered fibers, showing the presence of shallow fold lines approximately 10pm wide, which are characteristic of the injection moldi
44、ng process. The fibers exhibit minor grooving along their length due to ejection from the tool. Figure 5 shows the capability of near net-shape molding for fabricating very fine scale preforms; PZT element dimensions only 30pm wide have been demonstrated. The as-sintered surface of these elements in
45、dicates that the PZT ceramic microstructure is dense and uniform,n consisting of equiaxed grains 2-3pm in diameter.Figure 3: Injection Molded 1-3 Composite Preforms. Figure 4: Scanning Electron Micrographs of As-molded(Upper and As-sintered (Lower Surfaces of PZT Fibers Figure 5: Fine-scale 2-2 Comp
46、osite formed by Near Netshape olding (Upper Micrograph. As-sintered Surface(Lower Micrograph.In order to demonstrate the lay-up approach for composite fabrication, composites of approximately 10 volume percent PZT-5H" fibers and Spurrs epoxy resin were fabricated by epoxy encapsulating laid-up
47、pairs of injection molded and sintered fiber rows followed by grinding away the PZT ceramic stock used to mold the composite preform. Figure 6 shows composite samples made from freshly-compounded PZT/binder mixture and from reused material. Recycling of the compounded and molded material appears to
48、be entirely feasible and results in greatly enhanced material utilization. Table 1 compares the piezoelectric and dielectric properties of injection molded PZT ceramic specimens with those reported for pressed PZT-5H samples prepared by the powder manufacturer. When the sintering conditions are opti
49、mized for the PZT-5H formulation, the piezoelectric and dielectric properties are comparable for both materials. Since the donordoped PZT-5H formulation is expected to be particularlysensitive to iron contamination from the injection molding equipment, the implication of these measurements is that s
50、uch contamination is negligible in this injection molded PZT material.SummaryCeramic injection molding has been shown to be a viable process for fabricating both PZT ceramics and piezoelectric ceramic/polymer transducers. The electrical properties of injection molded PZT ceramics are comparable with
51、 those prepared by conventional powder pressing, with no evidence of deleterious effects from metallic contamination arising from contact with the compounding and molding equipment. By using ceramic injection molding to fabricate composite preforms, and then laying up the preforms to form larger com
52、posite arrays, an approach has been demonstrated for net-shape manufacturing of piezoelectric composite transducers in large quantities. Acknowledgements This work was funded by the Office of NavalResearch under the direction of Mr. Stephen E. Newfield. The authors wish to thank Ms. Hong Pham for te
53、chnical assistance, and Dr. Thomas Shrout of the Materials Research Laboratory, Penn. State Universityfor electrical measurementsReferencesl R. E. Newnham et al, "Composite Piezoelectric Transducers," Materials in Engineering, Vol. 2, pp. 93-106, Dec. 1980.2 C. Nakaya et al, IEEE Ultrasoni
54、cs Symposium Proc., Oct. 16-18, 1985, p 634. 3 S. D. Darrah et al, "Large Area Piezoelectric Composites," Proc. of the ADPA Conference on Active Materials and Structures, Alexandria, Virginia, Nov. 4-8, 1991, Ed. G. Knowles, Institute of Physics Publishing, pp 139-142. 4 A. Safari and D. J
55、. Waller, "Fine Scale PZT Fiber/Polymer Composites, " presented at the ADPA Conference on Active Materials and Structures, Alexandria, Virginia, Nov.4-8, 1991.5 U. Bast, D. Cramer and A. Wolff, "A New Technique for the Production of Piezoelectric Composites with 1-3 Connectivity,"
56、; Proc. of the 7th CIMTEC, Montecatini, Italy, June 24-30, 1990, Ed. P. Vincenzini, Elsevier, pp 2005-201 5.6 G. Bandyopadhyay and K. W. French, "Fabrication of Near-net Shape Silicon Nitride Parts for Engine Application," J. Eng. for Gas Turbines And Power, 108, J. Greim et al, "Inje
57、ction Molded Sintered Turbocharger Rotors," Proc. 3rd. Int. Symp. Heat Engines, Las Vegas, Nev., pp. 1365- 1375, Amer. Cer. Soc. 1989. pp 536-539, 1986.7 J. Greim et al, "Injection Molded Sintered Turbocharger Rotors," Proc. 3rd. Int. Symp. on Ceramic Materials and Components for Heat Engines, Las Vegas, Nev., pp. 1365- 1375, Amer. Cer. Soc. 1989
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 30661.10-2024轮椅车座椅第10部分:体位支撑装置的阻燃性要求和试验方法
- 换土地合同模板5篇
- 经典伤感个性签名
- 七夕送女朋友贺卡情话
- 《平安吉星送宝》课件
- 现代物流管理课件
- 【初中数学课件】变量与函数测试讲析课件
- 春季要养生的课件
- 《湖南师范大学》课件
- 《GMP自检概述》课件
- 2024年职业病宣传周知识竞赛考试题库350题(含答案)
- 房地产经纪指南:业务流程介绍
- 中华人民共和国保守国家秘密法解读学习
- 中秋国庆慰问品采购慰问品供货实施方案
- 2024年海南乐东县乐供“菜篮子”发展有限公司招聘笔试参考题库含答案解析
- 保安市场行业市场现状分析及对策
- JGJT280-2012 中小学校体育设施技术规程
- 幼儿园大班健康领域指南目标
- 大型机械设备安全操作培训
- 管道阀门更换施工方案
- 人教版小学数学三年级上册周长【全国一等奖】
评论
0/150
提交评论